The Codewriting Workbook
Creating Computational Architecture in AutoLISP
By Robert J. Krawczyk
Princeton Architectural Press, 2008
New York

Contents

Foreword
William J. Mitchell

1.0 Introduction
1.1 Why use a procedure to create a drawing or model?
1.2 What are the limitations to using a procedure?
1.3 What is the best way to approach the exercises in this workbook?
1.4 Why use Autodesk’s CAD Programming environment?
1.5 Who is this workbook written for?
1.6 What does the Codewriting Workbook cover?

2.0 Operations and Expressions
2.1 Addition
2.2 Subtraction
2.3 Multiplication
2.4 Division
2.5 Increment and Decrement
2.6 Assign a Variable a Value
2.7 Division and the Remainder Function
2.8 Absolute and Square Root Functions
2.9 Powers and Roots
2.10 Expressions
2.11 Translating Expressions
2.12 Degrees, Radians, and Trigonometric Functions
2.13 String Functions
2.14 List Functions
2.15 Coordinate List, Polar, Distance, and Angle Functions

3.0 Input, Output, and Defining Functions
3.1 Getting Points and Drawing Lines
3.2 Defining a Function
3.3 Drawing a Triangle
3.4 Drawing a Rectangle
3.5: Draw a rectangle by computing two corners points
3.6 Getting numeric values
3.7 Displaying Numeric Values
3.8 Drawing a Rectangle by Dimensions
3.9 Structural sections
3.10 I-beam sections
3.11 Drawing Structural Sections
3.12 Drawing Structural Sections
3.13: Extrude a section to a height
3.14 Draw a Nested Triangle
3.15: A nested triangle
3.16 Draw a Circle Based on Area
3.17 Draw a circle based on area
3.18 Draw a Pentagon
3.19 Drawing pentagons
3.20 Draw a Rounded Rectangle
3.21 A rounded rectangle
3.22 Draw a Shape Using a Solid
3.23 Function for a circular tube
3.24 A quatrefoil, before and after subtraction
3.25 A cross-shaped opening in an elliptical plate
3.26 Subtract from a plate thickness
3.27 Add to the plate thickness
3.28 Draw a Shape Using Blocks
3.29 Functions as Shapes
3.30 A three-dimensional ring trefoil
3.16 Converting Numeric and String Values

4.0 Decisions and Repetition

4.1 Making Decisions

4.2 Repetition When the Number of Repeats Is Known

4.3 Repetition Based on the Evaluation of an Expression

4.4 Repetition Determined Within the Body of a Loop by Value

4.5 Repetition Determined Within the Body of a Loop by Input

4.6 Nested Loops

4.7 Draw a Set of Nested Rectangles

PROG01, nested rectangle parameters
PROG01, nested rectangle variations
PROG01a, nested rectangles, bases of four points

4.8 Draw a Radial Spiral

PROG02, radial lines starting at 0 degrees; PROG02a, starting at one-increment degrees
PROG02b, two sets of increasing and decreasing radial lines
PROG02c, spiral connecting end points, 8 line segments and 32 line segments
PROG02d, spiral radial lines to edge
PROG02g, spiral at full radius length
PROG02h, 3-D spiral of radial lines
PROG02i, 3-D spiral ramp as a mesh, wireframe, and hidden line views
PROG02j, 3-D spiral ramp converted to steps
PROG02k, 3-D spiral steps as polylines and extruded polylines
PROG02l, 3-D spiral of two revolutions, isometric and plan views
PROG02m, 3-D spiral steps with multiple revolutions

4.9. Draw a Linear Series of Objects

PROG03, simple repetition of a circle
PROG03a, repetition with increasing circle radius
PROG03b, repetition with increasing and decreasing circle radius, 12 and 13 repeats
PROG03c, repetition with increasing and decreasing circle radius, 13 repeats revised
PROG03d, repetition with increasing and decreasing rectangle dimensions
PROG03e, repetition with increasing and decreasing rectangle height
PROG03f, vertical repetition with an increasing and decreasing rectangle rotation, even and odd number of repeats
PROG03g, vertical repetition of a rotated rectangle, isometric and plan view
PROG03h, vertical repetition of a rotated ellipse, isometric and plan view

4.10 Draw a Rectangular Array of Objects

PROG04, array of increasing height cylinders, to one edge
PROG04a, array of increasing height cylinders, to center
PROG04b, array of increasing radius circular rings
PROG04c, array of decreasing radius and height circular rings
PROG04d, array of increasing heights as a mesh, isometric and front view
PROG04e, array of mathematically computed heights as a mesh
PROG04f, mesh heights based on sin(x)+sin(y)
PROG04g, mesh heights based on sin(x)+cos(y)
PROG04h, mesh heights based on sin(x)-cos(y)
PROG04i, mesh heights based on sin(x)*cos(y)
PROG04k, mesh heights based on (abs(sin(dtr xang))

4.11 Draw a Circular Array of Objects

PROG05, repeated and rotated square 8 and 12 times, rectangle 12 times
PROG05a, overlay three sets of rotated squares
PROG05b, 6-sided polygon, rotated 6 and 12 times
PROG05c, overlaid rotated polygons
PROG06, overlaid rotated polygons with edge thickness
PROG06a, polygon with origin at start of bottom edge
PROG06b, polygon with origin at midpoint of bottom edge
PROG06c, polygon with origin at center
PROG06d, polygon with offset from start of bottom edge
PROG06e, polygon with offset from midpoint of bottom edge
PROG06f, polygon with offset from center

DOLPOLYGON, line polygon examples
5.0 Generating Simple Forms

5.1 Generating a Simple Linear Form

PROG01, draw a series of lines
PROG02, convert lines to planes
PROG03, vary length of each plane by the sine function
PROG04, vary length of each plane by the cosine function
PROG05, vary length of each plane by the absolute value of the cosine function
PROG06, keep a portion of the line length
PROG07, for 2.0 and 0.5 curve cycles
PROG08, vary the height of each plane
PROG09, mirror the planes
PROG10, vary height differently from edge
PROG11, switch functions on length and height
PROG12, convert planes to a frame
PROG12, relationship of plane points to frame points
PROG13, add center point to top of frame
PROG14, separate midpoint frame height
PROG15, modify column base location to edge
PROG15a, modify column top location to edge
PROG16, convert frame to a surface
PROG17, close the bottom and ends of the mesh
PROG18, horizontal offset to the midpoint height

Other curves
Variations of the sine function
Variations of the cosine function
DOCURVE example
PROG18a, parameter description included as text
PROG19, converting to a vertical linear form
PROG20, additional points for symmetry
PROG20, converting to a vertical symmetrical linear form

5.2 Generating a Form on a Circular Path

PROG01, circle parameters
PROG01, example of simple circular disc
PROG01, example of a simple polygonal disc
PROG02, convert circular disc to a ring
PROG03, convert circular form to elliptical
PROG04, variations of inside and outside heights
PROG05, circular form swept less than 360 degrees
PROG06, variations of height using a mathematical function

5.3 Developing a Function to Test Curves

Other curves to explore
Circular Curve
Lame Curve as a Superellipse
Curve of Watt
Epicycloid Curve, 1 cusp, a Cardoid
Epicycloid Curve, 2 cusps, a Nephroid
Epicycloid Curve, 3 cusps
Epicycloid Curve, 4 cusps
Hypocycloid Curve, 3 cusps
Hypocycloid Curve, 4 cusps
Lips Curve
Bicorn Curve
Piriform Curve
Eight Curve
Lemniscate of Bernoulli Curve
Cranioid Curve
Curve of Convexities, 3 pedals
Curve of Convexities, 4 pedals
Hippopede Curve
Geometric Pedal B
Geometric Pedal C
PROG08, Lips Curve with 64 and 8 segments
PROG08, Lips Curve, from the outside, 3rd, 5th, 7th, and 13th powers

5.4 Generating a Form Along a Vertical Path
PROG01, polygon section of 4 and 5 sides
PROG02, top and bottom surfaces added
PROG03, tapered polygon shaped floors, 4 and 32 sides
PROG04, rotated floors, 90, 180 and 270 degrees
PROG05, offset floors, x and y offsets
PROG06, elliptical floors, 4, 8, and 32 sides
PROG07, elliptical section transformations
PROG08, vary the section radius by a mathematical function
PROG09, vary the section radius of selected points
PROG10a and PROG10b, Cardioid and Geometric Pedal B Curve sections
PROG10c, Hippopede Curve changing radius and rotation
PROG10d, Curve of Convexities, 3 and 4 pedals
PROG11a, partial polygon sections
PROG11b, include partial polygons, front and rear views
PROG12, section based on a list of points
PROG13, morph a square to a triangle section, with rotation
PROG14, floor plates as POLYLINEs and REGIONs
PROG15, setbacks with multiple sections combined

6.0 Random Constructions

6.1 Random Relief Patterns from Basic Shapes
PROG01, grid of squares
PROG02, repeated squares with random heights
PROG03, repeated circles inside the grid
PROG03, repeated circles extending outside the grid
PROG04, repeated polygon, trimmed to edges
PROG05, random heights from a list
PROG05, with height values included
PROG06, randomly rotated squares
PROG06a, with random rotation and height list
PROG07, squares with set heights based on rotation
PROG08, polygons with set heights based on rotation
PROG09, overlapping triangles
PROG09, circles with random radius and height
PROG10, circles with random radius, height, and offsets
PROG11, positive and negative pattern
Sample of simple module constructions
PROG12a, four quarter module
PROG12j, three arcs
PROG12k, two random segments

6.2 Random Relief Patterns of 3-D Shapes
PROG01, pyramid panels constructed with lines
PROG01a, pyramid panels constructed with 3DFACES
PROG02, pyramid panels with random center
PROG03, pyramid panels with a circular path offset
PROG04, truncated pyramid panels
PROG05, truncated pyramid with random top offset
PROG06, truncated pyramid with random top dimension

6.3 Random Perforations
PROG01, simple perforations
PROG02, random sticks
PROG02a, random sticks trimmed
PROG02b, random sticks trimmed and framed
PROG02c, random sticks framed
PROG03, random circular rings
PROG03a, circular rings, increase randomness to center
PROG03b, circular rings, selective increase of randomness to center
PROG03c, circular rings, selective increase randomness to right edge
PROG04, polygonal rings, random triangles
PROG04, polygonal rings, random rectangles
PROG03b, circular rings, multilayered
PROG05, circular rings on four layers
PROG06, multiple random shapes
PROG06a, selective multiple random shapes
PROG06b, blocks to be placed randomly
PROG06b, random blocks rotated
PROG07, random circles filling the panel

6.4 Random surface constructions
PROG01, simple mesh with random heights
PROG02, mesh with set edge elevations at zero
PROG02a, mesh with a XY random offset included
PROG03, mesh with a bottom included
PROG04, mesh with vertical sides
PROG05, mesh with vertical sides and bottom
PROG06, mesh with increase randomness
PROG07, mesh with randomness by a mathematical function
PROG08, mesh with randomness varying a mathematical function
PROG09, mesh with a set edge height
PROG09a, mesh with a Y offset
PROG10, mesh using multiple mathematical functions
PROG11, 11a and 11b, vertical mesh, open, closed, and with a top and bottom
PROG12, random variation of radius offset
PROG13, vertical random variation of radius offset
PROG14, elliptical vertical random variation of radius offset

6.5 Random floor constructions
PROG01, development of random squares at floor edge
PROG01, completed random squares at floor edge
PROG01a, development of additional design constraints on floor edge
PROG01a, completed random squares at floor edge
PROG01b, addition of slab
PROG02, random polygons at edge
PROG03, random radius circles at floor edge
PROG03a, random radius circles at floor slab edge
PROG04, random sine curve for the front edge
PROG04a, random start and range for the sine curve
PROG04b, add floor slab
PROG04c, sequence of curves
PROG05 and PROG05a, elliptical and superelliptical floor edge
PROG06, elliptical series of random circles
PROG06a, elliptical series of random circles, varied heights
PROG07, random building masses along a rectangular edge
PROG07a, random building masses along an elliptical edge
PROG07b, random building masses with floor plans
PROG08, random building masses within a boundary
PROG08a, random building masses within a boundary trimmed

7.0 Constructions from Data

7.1 Constructions from Weather Data
Reading and writing data files
PROG01, reading weather data
PROG02b, January temperature mesh with edges and bottom
PROG02c, January temperature sections
PROG03, January temperature relief
PROG04, January temperature perforations
PROG04b, January wind direction and speed perforations
PROG05, 5a, and 5b, January temperature as a cylindrical mesh
PROG05c, January temperature as circular sections
PROG05d, January temperature presented vertically
PROG05e, January temperature presented vertically to scale
PROG06, January temperature presented in a radial pattern
PROG06a, January temperature presented in a radial pattern variable opening
PROG06b, January temperature presented in a radial pattern common center
PROG06c, January temperature presented in an elliptical pattern
PROG06d, January temperature in a radial pattern with edges and bottom
PROG07, January temperature as a spherical mesh
PROG07a, January temperature as a full spherical mesh

7.2 Constructions from Images
Image of Mies van der Rohe
PROG02, pixels as circles
PROG02a, pixels as filled circles
PROG02b, pixels as filled squares
PROG02c, pixels as rotated filled squares
PROG02d, pixels at fixed radius
Image of clouds
PROG03, clouds image as a relief
PROG03a, inverted clouds image as a relief
PROG03b, inverted clouds image as a relief, using a list of heights
PROG04, clouds image as a mesh
PROG04a, clouds image as a mesh with sides and bottom
PROG05, clouds image as cylindrical meshes
PROG06, clouds image as a spherical mesh

Acknowledgments
Additional Reading